In-Plane Shielding for CT: Effect of Off-Centering, Automatic Exposure Control and Shield-to-Surface Distance
نویسندگان
چکیده
OBJECTIVE To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. MATERIALS AND METHODS A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The "shielded" phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. RESULTS The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. CONCLUSION In-plane shields are associated with greater image noise, artifactually increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield.
منابع مشابه
نقش الگوی سپرالکترو مغناطیسی جدید در کاهش امواج مایکروویو(مطالعه موردی باند بسامدی ایکس)
Background and aims: X-band microwave with 8-12.5 frequency range has various applications such as air control traffic, navy communication and etc. Uncontrolled exposure with microwave can lead to adverse effect on workers. Application of the shielding is superior control for prevention of microwave exposure.The aim of this study is production a new electromagnetic shielding for exposure contr...
متن کاملEvaluation of polyurethane composite shields effect on reducing the risk of cataract induction at head CT scan
Head computed tomography is a common diagnostic examination, which may cause lenticular opacity and cataracts. Cataract induction is one of the non-stochastic effects of radiation, that happens at threshold dose of 0.5 Gy. Recent studies illustrate that only irradiation to the sensitive (germinative) zone of the lens is a prerequisite to cataract development. Recently, the dose values absorbed ...
متن کاملEvaluation of Testis functioning during Pelvic Radiotherin the presence of testis lead shield
Introduction: Rectal and bladder cancer are the most common disease among young man. Although External Radiotherapy (EBRT) is one of the most effective treatment options introduced so far, the testis undesired radiation dose increases the risk of infertility and hormonal malfunctioning. The testicles are usually outside of the radiation field, but they can be exposed either to ...
متن کاملبهبود اثربخشی حفاظتی سپرالکترومغناطیسی در برابر امواج راداری باند ایکس با استفاده از عامل پراکندگی
Background and aims: X-band with 8-12.5 frequencies range has various applications such as air control traffic, navy communication and etc. Uncontrolled exposure with microwave can lead to adverse effect on workers. Application of the shielding is superior control for prevention of microwave exposure, now. This study investigated the effect of dispersion on shielding effectiveness improvement a...
متن کاملAssessing the image quality and eye lens dose reduction using bismuth shielding in computed tomography of brain
Background: Epidemiological studies show that computed tomography (CT) is one of the main sources of ionizing radiations. Shielding of radiosensitive organs is one of the dose reduction methods. This study aimed to assess the eye lens dose reduction and image quality resulting from the use of radio-protective bismuth shield in brain CT imaging. Methods: Bismut...
متن کامل